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Abstract

A graph is called “Laplacian integral” if the eigenvalues of its Laplacian matrix are all integers.
We investigate the subset of these graphs whose Laplacian is furthermore diagonalized by a matrix
with entries coming from a fixed set, with particular emphasis on the sets t´1, 0, 1u or t´1, 1u. Such
graphs include as special cases the recently-investigated families of “Hadamard-diagonalizable” and
“weakly Hadamard-diagonalizable” graphs. As a combinatorial tool to aid in our investigation, we
introduce a family of vectors that we call “balanced”, which generalize totally balanced partitions,
regular sequences, and complete partitions. We show that balanced vectors completely characterize
which graph complements and complete multipartite graphs are t´1, 0, 1u-diagonalizable, and we
furthermore prove results on diagonalizability of the Cartesian product, disjoint union, and join of
graphs. Particular attention is paid to the t´1, 0, 1u- and t´1, 1u-diagonalizability of the complete
graphs and complete multipartite graphs. Finally, we provide a complete list of all simple, connected
graphs on nine or fewer vertices that are t´1, 0, 1u- or t´1, 1u-diagonalizable.
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1 Introduction

In spectral graph theory, the goal is to identify how the eigenvalues and/or eigenvectors of a graph’s adja-
cency and/or Laplacian matrix relate to properties of the graph itself [BH11]. In recent years, a significant
amount of attention in this area has been given to graphs with eigenspaces that are spanned by eigenvec-
tors with restricted entries. For example, numerous papers have explored eigenspaces of graphs that are
spanned entirely by vectors whose entries come from the set t´1, 0, 1u [AAGK06, San08], while others
have explored graphs that are diagonalizable by a Hadamard matrix (and thus have eigenspaces spanned
entirely by vectors whose entries come from the set t´1, 1u) [BFK11, BBF`22]. Sometimes orthogonality
is expected between these eigenvectors, while other times only a weaker condition like linear independence
or quasi-orthogonality [AAF`21] is required.

One of the prototypical applications of such graphs arises in quantum information theory. In this
setting, the concept of “perfect state transfer” (see [ADL`16] and references therein) describes the ability
to transfer a quantum state from one vertex of a graph to another reliably, which is required in order for
quantum computers to function properly [Bos03]. Hadamard diagonalizability of a graph’s Laplacian has
been shown to be a useful tool when investigating whether or not it exhibits perfect state transfer [JKP`17],
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and more recently the same has been shown of graphs with Laplacian that can be diagonalized by a weak
Hadamard matrix [MMP23].

In this paper, we explore which graphs have a Laplacian matrix that can be diagonalized by a t´1, 0, 1u-
or t´1, 1u-valued matrix. Unlike recent work on Hadamard-diagonalizable graphs and weakly Hadamard-
diagonalizable graphs, we do not enforce any orthogonality or quasi-orthogonality conditions on the
t´1, 0, 1u- or t´1, 1u-valued matrices. Instead, we introduce the concepts of t´1, 0, 1u-bandwidth and
t´1, 1u-bandwidth of a graph, which generalize and unify these different notions of orthogonality. For
example, a graph is Hadamard-diagonalizable if and only if it has t´1, 1u-bandwidth 1 and it is weakly
Hadamard-diagonalizable if and only if it has t´1, 0, 1u-bandwidth at most 2 (see Section 2.2 for details).

As a combinatorial tool that we believe is of independent interest, we introduce a family of vectors that
we call “balanced”. These vectors generalize numerous other combinatorial objects that have been studied
previously:

• recursively balanced partitions, which were introduced for their connections to weakly Hadamard
diagonalizable graphs [AAF`21];

• regular sequences, which have applications particularly in statistics [FO89]; and

• complete partitions, which are partitions of a given number that contain, as subsets, partitions of all
smaller numbers [Par98].

We show that balanced vectors are at the heart of t´1, 0, 1u-diagonalizability, as they completely deter-
mine whether or not the complement of a t´1, 0, 1u-diagonalizable graph is t´1, 0, 1u-diagonalizable (see
Theorem 4) and which complete multipartite graphs are t´1, 0, 1u-diagonalizable (see Corollary 3).

1.1 Organization of the Paper

We start in Section 2 by presenting the necessary mathematical preliminaries and definitions, and intro-
ducing the notation used throughout the paper. In Section 3, we define and explore the concept of balanced
vectors. In Section 4, we study t´1, 0, 1u- and t´1, 1u-diagonalizability of complete graphs, complements
of graphs, joins of graphs, and complete multipartite graphs. In particular, we show that this type of diag-
onalizability is closely connected with the well-known Hadamard conjecture, a natural t´1, 0, 1u-valued
variant of it, and the balanced vectors that were introduced earlier. We furthermore provide, in Section 4.4,
an exhaustive list of all simple graphs on nine or fewer vertices that are t´1, 0, 1u-diagonalizable, as well
their t´1, 0, 1u- andt´1, 1u-bandwidths. MATLAB code that was used to compute this list of graphs is
available at [Joh23a]. Finally, we close in Section 5 with some open questions.

2 Preliminaries and definitions

We consider only real-valued (not complex-valued) vectors and matrices herein. We use bold lowercase
letters like v, w, . . . to denote vectors, ej to denote the j-th standard basis vector (i.e., the vector with 1
in its j-th entry and 0 elsewhere), and 1n to denote the n-entry all-ones vector (or just 1 if the number
of entries is unimportant or clear from context). We use Z

p
` to denote vectors of length p P Z` having

all (strictly) positive integer entries. We denote the set of all m ˆ n real-valued matrices by Mm,n, or
simply Mn in the case when m “ n, and we use upper case letters like A, B, . . . to denote matrices. The
n ˆ n identity matrix is denoted by In (or simply I if its size is unimportant or clear from context) and the
all-ones matrix is denoted by J.

A superscript T denotes the transpose of a vector or matrix, although we will often freely associate
between vectors viewed as columns and vectors viewed as rows. We denote the set of n ˆ n positive
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semi-definite (PSD) real matrices by M`
n and we require symmetry of all PSD matrices. We use non-bold

lowercase letters with subscripts to denote specific entries of vectors and matrices: vj is the j-th entry of v
and ai,j is the pi, jq-entry of A.

We exclusively consider simple graphs: unweighted, undirected graphs with no loops. If G is a simple
graph on n vertices then its adjacency matrix is the symmetric matrix A :“ rai,js P Mn that has ai,j “ 1 if
there is an edge between vertices i and j and ai,j “ 0 otherwise. The degree matrix D P Mn is a diagonal
matrix whose diagonal entry di,i (1 ď i ď n) equals the degree of the vertex i (i.e., the number of edges
incident to vertex i). The graph G is regular if di,i is constant for all i. The Laplacian matrix of G is the
symmetric matrix L :“ D ´ A.

The Laplacian matrix L of a simple graph G has numerous useful properties:

• L is diagonally dominant and thus positive semidefinite;

• L has row sums equal to 0. In other words, if 0, 1 P Rn are the all-zeros and all-ones vectors,
respectively, then L1 “ 0, so 1 is an eigenvector of L with corresponding eigenvalue 0; and

• the multiplicity of the eigenvalue 0 is exactly the number of connected components of G. In partic-
ular, G is connected if and only if the eigenspace corresponding to the eigenvalue 0 is spanp1q.

2.1 Laplacian integral and Hadamard-diagonalizable graphs

A graph is called Laplacian integral if all of the eigenvalues of its Laplacian matrix are integers (see
[GM94, GM08, Kir07] and the references therein). Numerous important families of graphs are Lapla-
cian integral, including all cographs [Mer98] (i.e., graphs generated from a single vertex along with the
operations of graph complement and disjoint union) and thus their sub-families of complete multipartite
graphs [ZW11] and threshold graphs. If a simple graph is Laplacian integral then its eigenvectors can be
chosen to have integer entries as well, since the entries of L ´ λI are all integers and thus the equation
pL ´ λIqx “ 0 has a solution with x P Zn.

The following definition makes it convenient to discuss whether or not the entries of the eigenvectors
of a Laplacian integral graph can be restricted further:

Definition 1. Given a set S Ď R, we say that a graph G is S-diagonalizable if there is a basis of eigenvec-
tors for the Laplacian L of G whose entries all belong to S. Equivalently, G is S-diagonalizable if there
exists a matrix P, whose entries all belong to S, with the property that P´1LP is diagonal.

For example, just prior to Definition 1 we showed that every Laplacian integral graph is Z-diagonalizable.
In the opposite direction, it is not difficult to show that every t´1, 0, 1u-diagonalizable or t´1, 1u-diagonalizable
graph is Laplacian integral; these are the families of graphs that we focus most of our attention on. Some
easily-provable properties of t´1, 0, 1u- and t´1, 1u-diagonalizable graphs include:

• If G is a simple t´1, 1u-diagonalizable graph then all eigenvalues of its Laplacian matrix L are even
integers. This can be proved via an argument that is identical to that of [BFK11, Theorem 5].

• If G is a simple connected t´1, 0, 1u-diagonalizable graph then orthogonality of the eigenspaces of
real symmetric matrices implies that all t´1, 0, 1u-eigenvectors of L other than ˘1 have the same
number of entries equal to 1 as ´1.

The set of graphs that are t´1, 1u-diagonalizable contains the set of Hadamard-diagonalizable graphs
as a subset: these are graphs G whose Laplacian matrix L can be diagonalized by a Hadamard matrix H
(i.e., a matrix whose entries all belong to t´1, 1u and whose columns are mutually orthogonal). Simi-
larly, graphs that are t´1, 0, 1u-diagonalizable contain, as a sub-family, graphs that are weakly Hamadard-
diagonalizable [AAF`21]:
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Definition 2. A matrix P P Mn is a weak Hadamard matrix if all of its entries belong to t´1, 0, 1u and
PTP is a tridiagonal matrix. A graph G is weakly Hadamard-diagonalizable (WHD) if its Laplacian matrix
L can be diagonalized by a weak Hadamard matrix (i.e., P´1LP is diagonal for some weak Hadamard
matrix P).

2.2 Bandwidth and (quasi-)orthogonality

The tridiagonal requirement of weak Hadamard matrices from Definition 2 relaxes the requirement of
(non-weak) Hadamard matrices that their columns be mutually orthogonal. In particular, PTP being tridi-
agonal is equivalent to the columns v1, v2, . . ., vn of P (i.e., the eigenvectors of the Laplacian L) being
quasi-orthogonal: vi ¨ vj “ 0 whenever |i ´ j| ě 2.

Recall that the bandwidth of a matrix A is the smallest k P Z` with the property that ai,j “ 0 whenever
|i ´ j| ě k (so, for example, diagonal matrices have bandwidth 1 and tridiagonal matrices have bandwidth
2) [vdGM20, Chapter 7.2].3 It is then natural to define the bandwidth of a graph’s diagonalization as
follows:

Definition 3. Let S Ď R and let G be a graph with Laplacian matrix L.

a) If G is not S-diagonalizable then the S-bandwidth of G is 8.

b) If G is S-diagonalizable then the S-bandwidth of G is the smallest k P Z` for which there exists a
matrix P with all of the following properties:

• all of its entries belong to S;

• P´1LP is diagonal; and

• PTP has bandwidth k.

It is immediate from this definition that if an n-vertex graph has finite S-bandwidth then its S-bandwidth
is at most n. In fact, we can do slightly better by recalling that if a graph has c ě 1 connected components
then its Laplacian matrix has at least two distinct eigenvalues (0 and a strictly positive number), and the
corresponding eigenspaces are orthogonal to each other. It follows that the S-bandwidth of the graph is
at most maxtc, n ´ cu. We will see examples shortly of graphs whose S-bandwidths attain this bound, at
least for certain choices of c, n, and S.

We are mostly interested in the concept of S-bandwidth when S “ t´1, 0, 1u or S “ t´1, 1u. For
example, a graph has t´1, 1u-bandwidth equal to 1 if and only if it is Hadamard diagonalizable, and it has
t´1, 0, 1u-bandwidth at most 2 if and only if it is weakly Hadamard diagonalizable. Many of the results
about weakly Hadamard diagonalizable graphs from [AAF`21] still hold for arbitrary t´1, 0, 1u- and
t´1, 1u-bandwidths. Indeed, many of the proofs from that paper do not make use of quasi-orthogonality
of the Laplacian’s eigenvectors, so the same proofs establish the following facts:

Proposition 1. Let S Ď R and let G and H be graphs with m and n vertices, respectively.

a) If G is connected and S-diagonalizable with bandwidth k then its complement Gc is S-diagonalizable
with bandwidth at most k (c.f. [AAF`21, Lemma 2.4]).

b) If 0 P S and G and H are S-diagonalizable with bandwidths k and ℓ, respectively, then the disjoint
union G \ H is S-diagonalizable with bandwidth maxtk, ℓu (c.f. [AAF`21, Lemma 2.3]).

3Some sources define the bandwidth of a matrix to be 1 less than the definition used herein, so that diagonal and tridiagonal
matrices have bandwidth 0 and 1, respectively.
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c) If S is closed under multiplication and G and H are S-diagonalizable with bandwidths k and
ℓ, respectively, then their Cartesian product G □ H is S-diagonalizable with bandwidth at most
mintnpk ´ 1q ` ℓ, mpℓ ´ 1q ` ku (c.f. [AAF`21, Proposition 3.3]).

There are some technicalities concerning each part of the above proposition that we should be careful
to clarify. It is tempting to conjecture that the S-bandwidth does not change when taking the complement in
property (a), but it actually can strictly decrease. For example, the t´1, 0, 1u-bandwidth of the (connected)
complete multipartite graph K4,1,1,1,1,1 is 2, but the t´1, 0, 1u-bandwidth of its (disconnected) complement
Kc

4,1,1,1,1,1 “ K4 \ K1 \ K1 \ K1 \ K1 \ K1 is 1. Furthermore, property (a) relies crucially on X being
connected: if it is disconnected then its complement might not be S-diagonalizable. For example, K2 \ K1
is t´1, 0, 1u-diagonalizable, but its complement pK2 \ K1qc “ K2,1 is not. We return to this problem in
Section 4.3.

The requirement of property (b) that 0 P S is necessary. For example, K2 and K1 are each t´1, 1u-
diagonalizable but K2 \ K1 is not. In particular, the disjoint union preserves t´1, 0, 1u-diagonalizability
but not t´1, 1u-diagonalizability.

In property (c), the strange quantity mintnpk ´ 1q ` ℓ, mpℓ ´ 1q ` ku comes from the fact that if
A P Mm and B P Mn are matrices with bandwidth k and ℓ, respectively, then A b B has bandwidth at
most npk ´ 1q ` ℓ and B b A has bandwidth at most mpℓ ´ 1q ` k. Also in property (c), the restriction
that S is closed under multiplication is satisfied, for example, by the sets S “ t´1, 0, 1u and S “ t´1, 1u,
so this property applies to all cases that we consider throughout the remainder of the paper.

If k “ 1 and ℓ “ 2 then property (c) says that G □ H has t´1, 0, 1u-bandwidth at most 2 (i.e., G □ H
is weakly Hadamard diagonalizable), thus recovering one of the statements of [AAF`21, Proposition 3.3].
The other two statements of that proposition (i.e., that the direct product and strong product of G and H are
also weakly Hadamard diagonalizable) are actually false: K2,1,1 has t´1, 0, 1u-bandwidth equal to 1, but
its strong and direct products with itself are not even Laplacian integral, let alone t´1, 0, 1u-diagonalizable
or weakly Hadamard diagonalizable.4

3 Balanced vectors

In [AAF`21], the concept of a recursively balanced partition was considered, and shown to have connec-
tions with weak Hadamard diagonalizability of graphs. Here, we introduce a slight generalization that will
let us characterize S-diagonalizability of certain families of graphs.

Definition 4. Let S Ď R. A vector v P Rp (p ě 2) is S-balanced if there exists a matrix A P Mp´1,p, all
of whose entries belong to S, with nullpAq “ spanpvq. If S “ t´1, 0, 1u then we simply call v balanced.

A vector v being balanced (i.e., t´1, 0, 1u-balanced) is equivalent, in the language of [AAF`21,
Proposition 4.2], to there being p ´ 1 equations of the form

vi1 ` vi2 ` ¨ ¨ ¨ ` vir “ vj1 ` vj2 ` ¨ ¨ ¨ ` vjs ,

so balanced vectors are at least as general as recursively balanced partitions (the balanced vector p1, 1, 1q,
which is not recursively balanced, shows that they are a strict generalization). These p ´ 1 equations can
be obtained by letting i1, i2, . . ., ir be the indices of the “´1” entries in a particular row of the matrix A,
and letting j1, j2, . . ., js be the indices the of the “`1” entries in that row. That is, for each row of A, the
sum of the entries of v corresponding to the ´1 entries in a particular row of A is equal to the sum of the
entries of v corresponding to the 1 entries in that row.

4The statements of [AAF`21, Proposition 3.3] concerning the strong and direct products are true if the hypothesis “regular”
is added to the statement of the proposition, which is likely what was intended.
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Implicit in Definition 4 is that the rank of A must be p ´ 1, its nullity must be 1, and S-balanced
vectors are all non-zero. We can also, without loss of generality, assume many other nice properties of
S-balanced vectors. For example, whether or not a vector is S-balanced does not depend on the order of
its entries, since any permutation that we apply to the entries of v can also be applied to the columns of the
matrix A from Definition 4. We may thus without loss of generality assume that their entries are sorted in
non-increasing order. Furthermore, the following proposition shows that we may assume without loss of
generality that the entries of an S-balanced vector are integers:

Proposition 2. Let S Ď Z and let v P Rp be an S-balanced vector. Then cv is also S-balanced for all
non-zero c P R. Furthermore, there exists c P R so that cv P Zp.

Proof. The fact that cv is also balanced follows from the fact that the null space of every matrix is a
subspace, so v P nullpAq implies cv P nullpAq. Furthermore, since A has full rank p ´ 1, each row of
the row reduced echelon form R of A has p ´ 2 entries equal to 0, one entry equal to 1, and one entry
that is some rational number (potentially equal to 0 or 1). It follows that we can find a non-zero vector in
nullpAq “ nullpRq with all entries integers no larger than the least common multiple of the denominators
of entries of R.

Furthermore, if S “ t´1, 0, 1u then we can assume without loss of generality that the entries of a
balanced vector v are all strictly positive. To see this, notice that multiplying the j-th column of the matrix
A from Definition 4 by ´1 results in a new balanced vector with its j-th entry multiplied by ´1. Similarly,
adding or removing a “0” entry to or from a balanced vector results in another balanced vector; simply add
or remove a single row and column to or from the matrix A from Definition 4 in the obvious way.5 We
summarize all of these “without loss of generality” observations in the following fact:

Fact 1. The following operations all preserve balancedness (i.e., t´1, 0, 1u-balancedness) of a vector
v P Rp:

• permuting the entries of v;

• replacing v by cv for some 0 ‰ c P R;

• changing the sign of some entries of v; and

• adding or removing r number of “0” entries to v, in which case the resulting vector is in Rp˘r.

Furthermore, every balanced vector in Rp can be obtained via these operations from a non-increasing
positive integer-valued balanced vector (i.e., a balanced vector with integer entries satisfying v1 ě v2 ě

¨ ¨ ¨ ě vp ě 1).

Because of the above fact, we typically only consider non-increasing balanced vectors in Z
p
` whose

entries have greatest common divisor equal to 1. For example, the only (up to scaling and re-ordering of
entries) balanced vectors in Z3

` are p1, 1, 1q and p2, 1, 1q, which come from the null spaces of the 2 ˆ 3
matrices

„

1 ´1 0
0 1 ´1

ȷ

and
„

1 ´1 ´1
0 1 ´1

ȷ

,

respectively. Every other balanced vector in R3 can be obtained by applying some combination of the first
three operations from Fact 1 to one of these two vectors, or by adding a “0” entry to a balanced vector
from R2.

The following proposition gives another way to construct new balanced vectors from old ones:
5To make this operation still preserve balancedness of vectors when p “ 2, we extend Definition 4 to the p “ 1 case by

simply specifying that v P R1 is balanced if and only if it is non-zero.
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Proposition 3. Suppose v P Rp and w P Rq are balanced. If there exist vectors x P t´1, 0, 1up and
y P t´1, 0, 1uq with v ¨ x “ w ¨ y ‰ 0, then pv, wq P Rp`q is balanced.

Before proving the above proposition, we note that the curious hypothesis involving the dot product
is indeed required for the conclusion to hold. For example, both v “ p3, 3q and w “ p1, 1q are balanced,
but pv, wq “ p3, 3, 1, 1q is not. The dot product hypothesis ensures that v and w have scaling that is not
“too far off” from each other (and since re-scaling a balanced vector produces another balanced vector,
this is not too much of a restriction). For example, if we choose x and y to be standard basis vectors in
Proposition 3 then we learn the following: if v P Z

p
` and w P Z

q
` are balanced and vi “ wj for some i, j

then pv, wq is balanced.

Proof of Proposition 3. Since v and w are balanced, there exist matrices A P Mp´1,p and B P Mq´1,q
with nullpAq “ spanpvq and nullpBq “ spanpwq. If x and y are as in the statement of the proposition
then it is straightforward to verify that when

C :“

»

–

A O
O B
xT ´yT

fi

fl P Mp`q´1,p`q,

we have nullpCq “ spanpv, wq, so pv, wq is balanced.

We provide a complete list (up to scaling and re-ordering of entries) of balanced vectors in Z
p
` for

p P t2, 3, 4, 5u in Table 1. Our focus will be particularly on the S “ t´1, 0, 1u case, so we have not
explicitly computed a list of S-balanced vectors for other choices of S. For the sake of an example,
however, we note that the vector p2, 1, 1, 1, 1q is t´1, 1u-balanced, as evidenced by the t´1, 1u-matrix

A “

»

—

—

–

1 1 ´1 ´1 ´1
1 ´1 1 ´1 ´1
1 ´1 ´1 1 ´1
1 ´1 ´1 ´1 1

fi

ffi

ffi

fl

,

which has nullpAq “ span
`

p2, 1, 1, 1, 1q
˘

.

3.1 Regular vectors

It seems likely that determining whether or not a given vector is balanced is a computationally difficult
question; we are not aware of a significantly better method than just checking the null space of every
pp ´ 1q ˆ p matrix with entries from t´1, 0, 1u. However, we will show shortly that the following vectors
(whose defining condition is easy to check) are all balanced:

Definition 5. Suppose v “ pv1, v2, . . . , vpq P Z
p
` is non-increasing (i.e., v1 ě v2 ě ¨ ¨ ¨ ě vp). If

vj ď
řp

i“j`1 vi for all j P t1, 2, . . . , p ´ 1u and vp “ 1 then v is called regular.

We note that, in addition to the requirement vp “ 1 in this definition, the inequality vj ď
řp

i“j`1 vi

when j “ p ´ 1 forces vp´1 “ 1, so all regular vectors end with p. . . , 1, 1q. We also note that the adjective
“regular” in the past was defined to refer to the sequence v1, v2, . . . , vp [FO89, Slo96]. Here, we instead
apply it to the corresponding vector pv1, v2, . . . , vpq. That is, we talk about regular vectors instead of
regular sequences; this is just a matter of convenience, as it is straightforward to convert between the two.
Finally, we note that if pv1, v2, . . . , vpq is a regular vector then pv1, v2, . . . , vp´1q is sometimes called a
complete partition (see [Par98, Hop07] and the references therein).

The following proposition shows that regular vectors are balanced:
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p vectors v

1 p1q

2 p1, 1q

3 p1, 1, 1q, p2, 1, 1q

4 p1, 1, 1, 1q, p2, 1, 1, 1q, p2, 2, 1, 1q, p3, 1, 1, 1q, p3, 2, 1, 1q, p3, 2, 2, 1q, p4, 2, 1, 1q, p4, 3, 2, 1q

5 p1, 1, 1, 1, 1q, p2, 1, 1, 1, 1q, p2, 2, 1, 1, 1q, p2, 2, 2, 1, 1q, p3, 1, 1, 1, 1q, p3, 2, 1, 1, 1q, p3, 2, 2, 1, 1q,
p3, 2, 2, 2, 1q, p3, 3, 1, 1, 1q, p3, 3, 2, 1, 1q, p3, 3, 2, 2, 1q, p3, 3, 2, 2, 2q, p4, 1, 1, 1, 1q, p4, 2, 1, 1, 1q,
p4, 2, 2, 1, 1q, p4, 3, 1, 1, 1q, p4, 3, 2, 1, 1q, p4, 3, 2, 2, 1q, p4, 3, 3, 1, 1q, p4, 3, 3, 2, 1q, p4, 3, 3, 2, 2q,
p4, 4, 2, 1, 1q, p4, 4, 3, 2, 1q, p4, 4, 3, 3, 2q, p5, 2, 1, 1, 1q, p5, 2, 2, 1, 1q, p5, 2, 2, 2, 1q, p5, 3, 1, 1, 1q,
p5, 3, 2, 1, 1q, p5, 3, 2, 2, 1q, p5, 3, 3, 1, 1q, p5, 3, 3, 2, 1q, p5, 4, 2, 1, 1q, p5, 4, 2, 2, 1q, p5, 4, 3, 1, 1q,
p5, 4, 3, 2, 1q, p5, 4, 3, 2, 2q, p5, 4, 3, 3, 1q, p5, 4, 3, 3, 2q, p5, 4, 4, 2, 1q, p5, 4, 4, 3, 2q, p6, 2, 2, 1, 1q,
p6, 3, 1, 1, 1q, p6, 3, 2, 1, 1q, p6, 3, 2, 2, 1q, p6, 4, 2, 1, 1q, p6, 4, 3, 1, 1q, p6, 4, 3, 2, 1q, p6, 4, 4, 1, 1q,
p6, 4, 4, 3, 1q, p6, 5, 2, 2, 1q, p6, 5, 3, 1, 1q, p6, 5, 3, 2, 1q, p6, 5, 3, 2, 2q, p6, 5, 4, 2, 1q, p6, 5, 4, 3, 1q,
p6, 5, 4, 3, 2q, p6, 5, 4, 4, 3q, p7, 3, 2, 1, 1q, p7, 3, 2, 2, 1q, p7, 3, 3, 2, 1q, p7, 4, 2, 1, 1q, p7, 4, 2, 2, 1q,
p7, 4, 3, 2, 1q, p7, 4, 4, 2, 1q, p7, 5, 3, 1, 1q, p7, 5, 3, 2, 1q, p7, 5, 3, 3, 1q, p7, 5, 4, 1, 1q, p7, 5, 4, 2, 1q,
p7, 5, 4, 3, 1q, p7, 6, 3, 2, 1q, p7, 6, 3, 2, 2q, p7, 6, 4, 2, 1q, p7, 6, 4, 3, 2q, p7, 6, 5, 3, 1q, p7, 6, 5, 3, 2q,
p7, 6, 5, 4, 2q, p7, 6, 5, 4, 3q, p8, 3, 2, 2, 1q, p8, 4, 2, 1, 1q, p8, 4, 3, 2, 1q, p8, 4, 3, 3, 2q, p8, 5, 2, 2, 1q,
p8, 5, 4, 2, 1q, p8, 5, 4, 3, 2q, p8, 6, 3, 2, 1q, p8, 6, 4, 1, 1q, p8, 6, 4, 3, 1q, p8, 6, 5, 2, 1q, p8, 6, 5, 4, 1q,
p8, 6, 5, 4, 3q, p8, 7, 3, 2, 2q, p8, 7, 4, 2, 1q, p8, 7, 4, 3, 2q, p8, 7, 5, 4, 2q, p8, 7, 6, 3, 2q, p8, 7, 6, 5, 4q,
p9, 4, 3, 2, 1q, p9, 5, 3, 2, 1q, p9, 6, 4, 2, 1q, p9, 6, 5, 2, 1q, p9, 7, 4, 3, 1q, p9, 7, 5, 3, 1q, p9, 8, 4, 3, 2q,
p9, 8, 6, 5, 2q, p10, 4, 3, 2, 1q, p10, 6, 3, 2, 1q, p10, 7, 4, 2, 1q, p10, 7, 6, 2, 1q, p10, 8, 4, 3, 1q,
p10, 8, 6, 3, 1q, p10, 9, 4, 3, 2q

Table 1: A list of all balanced vectors v P Z
p
` for p P t1, 2, 3, 4, 5u, up to scaling and re-ordering of

entries. There are 1, 1, 2, 8, and 113 vectors, respectively, in the rows of this table.

Proposition 4. Suppose v P Z
p
` is non-increasing and has vp “ 1. Then v is regular if and only if it is

balanced and the matrix A from Definition 4 can be chosen to be upper triangular.

Proof. For the “if” direction, suppose A P Mp´1,p is upper triangular, all of its entries belong to
t´1, 0, 1u, and nullpAq “ spanpvq. Furthermore, suppose without loss of generality that its diagonal
entries all equal 1 (if any equal ´1 then we can multiply that row by ´1 without changing the null space,
and none can equal 0 since that would imply rankpAq ă p ´ 1).

If aj
T is the j-th row of A, then v P nullpAq implies aj ¨ v “ 0, so (since aj P t´1, 0, 1up) we have

vj ď
řp

i“j`1 vi for all 1 ď j ď p ´ 1. In other words, v is regular.
Conversely, if v is regular then a standard result concerning regular vectors (see [FO89] or [FRMR90,

Lemma 2.1], for example) says that there exist subsets Sj Ď tj ` 1, j ` 2, . . . , pu such that vj “
ř

iPSj
vi

for all 1 ď j ď p ´ 1. We then define A P Mp´1,p to have its pj, iq-entry equal to

aj,i “

$

’

&

’

%

1, if i “ j,
´1, if i P Sj, and
0, otherwise.

It is then straightforward to verify that A is upper triangular, Av “ 0, and rankpAq “ p ´ 1 (since its
diagonal entries are all non-zero) so nullpAq “ spanpvq. This completes the proof.
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For any dimension p, regular vectors form a strict subset of balanced vectors. Indeed, it is straight-
forward to show that if a non-increasing vector v P Z

p
` is balanced then v1 ď

řp
i“2 vi (just apply the

triangle inequality to the first entry of Av “ 0, where A is the matrix from Definition 4). However, the
other p ´ 2 inequalities vj ď

řp
i“j`1 vi for j P t2, 3, . . . , p ´ 1u that hold for regular vectors need not hold

for balanced vectors. For example, when p “ 4 there are only 6 regular vectors: p1, 1, 1, 1q, p2, 1, 1, 1q,
p3, 1, 1, 1q, p2, 2, 1, 1q, p3, 2, 1, 1q, and p4, 2, 1, 1q. The other two (up to scaling) non-increasing balanced
vectors in Z4

` (i.e., p3, 2, 2, 1q and p4, 3, 2, 1q) are not regular.

4 t´1, 0, 1u and t´1, 1u-diagonalizability of specific graph families

In this section, we characterize t´1, 0, 1u- and t´1, 1u-diagonalizability of complete graphs, complete
multipartite graphs, graph complements, and some graphs that can be constructed by joining together
smaller graphs.

The following lemma will be useful to us repeatedly when characterizing t´1, 1u-diagonalizability of
graphs.

Lemma 1. There exists an invertible matrix A P Mn with the following properties if and only if n P

t1u Y t2n : n P Z`u:

• Every entry of A belongs to t´1, 1u,

• One column of A is 1, and

• All other columns of A are orthogonal to 1.

Proof. The “only if” direction follows from the fact that if n ą 1 is odd then there does not exist a vector
(i.e., a column of A) in t´1, 1un that is orthogonal to 1, since the sum of an odd number members of
t´1, 1u cannot equal 0.

For the “if” direction, the n “ 1 case is clear and the n P t2, 4u cases are handled by Hadamard
matrices, so suppose n ě 6 is even. Consider the vector v “ p1, ´1, 1, ´1, . . . , 1, ´1q P Rn. It is clear
that the circulant matrix with top row equal to v has rank 1 (every row in this matrix is the negative of the
row above it), so [Ing56, Proposition 1.1] tells us that the polynomial

f pxq :“ 1 ´ x ` x2 ´ x3 ` ¨ ¨ ¨ ` xn´2 ´ xn´1

has n ´ 1 of the n different n-th roots of unity as roots. It is straightforward to check that ´1 is not a root
of f , so we conclude that all n-th roots of unity except for ´1 are roots of f .

Now consider the following polynomial, which is obtained from f simply by swapping the signs of its
first two coefficients (but leaving the rest unchanged):

gpxq :“ p´1 ` xq ` px2 ´ x3 ` ¨ ¨ ¨ ` xn´2 ´ xn´1q.

Since n ě 6 it is straightforward to see that ´1 is not a root of g. Furthermore, since p f ´ gqpxq “ 2 ´ 2x,
has 1 as its only root, we conclude that 1 is the only root of unity that is a root of g. It follows from [Ing56,
Proposition 1.1] that the circulant matrix C with top row equal to w “ p´1, 1, 1, ´1, . . . , 1, ´1q P Rn

(obtained from v by swapping the signs of its first two entries) has rank n ´ 1. We can thus remove one
column from C without changing its rank, and then append 1 as a new column in its place. Since 1 is
orthogonal to all of the other columns, the resulting matrix A will have full rank and all other properties
described in the statement of the lemma.
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Our usage of the above lemma will be to demonstrate the existence or non-existence of a t´1, 1u

matrix diagonalizing certain Laplacians. Since every Laplacian is symmetric with 1 as an eigenvector
(corresponding to the eigenvalue 0), we can always (for every graph Laplacian and every n) find a matrix
A diagonalizing a graph Laplacian that satisfies the second and third conditions of Lemma 1; it is just the
first condition that is trickier.

Corollary 1. Suppose n P Z`. The following are equivalent:

a) n P t1u Y t2n : n P Z`u;

b) there is an n-vertex connected t´1, 1u-diagonalizable graph; and

c) the complete graph Kn is t´1, 1u-diagonalizable.

Proof. The fact that (c) implies (b) is trivial.
To see that (b) implies (a), recall that in a connected graph G all eigenvectors of the Laplacian L

except for the scalar multiples of 1 (i.e., all eigenvectors corresponding to an eigenvalue other than 0) are
orthogonal to 1. If L is diagonalized by a matrix with entries from t´1, 1u, the columns of that matrix are
eigenvectors of L and is thus a matrix with all of the properties described by Lemma 1. By that lemma,
n P t1u Y t2n : n P Z`u.

Finally, to see that (a) implies (c), let A P Mn be a matrix with all of the properties described by
Lemma 1. The Laplacian matrix L of Kn is L “ nI ´ J, which has eigenspaces spanp1q (corresponding
to eigenvalue 0) and its orthogonal complement (corresponding to eigenvalue n). It follows that A (whose
columns all equal 1 or are orthogonal to 1) diagonalizes L, so Kn is t´1, 1u-diagonalizable.

4.1 The complete graph

The following theorem summarizes what is known about the t´1, 0, 1u-diagonalizability and t´1, 1u-
diagonalizability and bandwidths of complete graphs.

Theorem 1. Let n ě 1 be an integer and let Kn be the complete graph on n vertices.

a) Kn is t´1, 0, 1u-diagonalizable, with t´1, 0, 1u-bandwidth at most 2.

b) Kn is t´1, 1u-diagonalizable if and only if n is even. Furthermore,

i) if n ” 2 pmod 4q then Kn has t´1, 1u-bandwidth n ´ 1; and

ii) if there exists a Hadamard matrix of order n (and thus n P t1, 2u Y t4k : k P Z`u) then Kn
has t´1, 1u-bandwidth 1.

Proof. Part (a) of the theorem is equivalent to the statement that Kn is weakly Hadamard diagonalizable,
which was proved in [AAF`21, Lemma 1.5]. The non-bandwidth portion of part (b) was proved already in
Corollary 1. The bandwidth statement (b)(ii) is equivalent to the statement that if there exists a Hadamard
matrix of order n then Kn is Hadamard-diagonalizable, which was proved in [BBF`22, Proposition 2.3].
Thus all that remains is to prove the bandwidth claim (b)(i).

To verify (b)(i), suppose that n ” 2 pmod 4q. Since the Laplacian L of Kn has eigenspaces of di-
mension 1 and n ´ 1 (corresponding to eigenvalues 0 and n, respectively), it is immediate that its t´1, 1u-
bandwidth is no larger than n ´ 1: if P diagonalizes L then PTP will be block diagonal with blocks of size
1 ˆ 1 and pn ´ 1q ˆ pn ´ 1q. To see that the t´1, 1u-bandwidth is not smaller than n ´ 1, it suffices to
show that none of its t´1, 1u-eigenvectors corresponding to eigenvalue n are orthogonal to each other (so
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all entries in the pn ´ 1q ˆ pn ´ 1q diagonal block of PTP are non-zero). To this end, simply notice that
if v and w are t´1, 1u-eigenvectors of L corresponding to eigenvalue n then they are both orthogonal to
1 and thus have n{2 entries equal to each of ´1 and 1. If k denotes the number of subscripts j for which
vj “ wj “ 1 then we see that

v ¨ w “ 2k ´ 2ppn{2q ´ kq “ 4k ´ n ‰ 0

(since n ” 2 pmod 4q), so v and w are not orthogonal.

The above theorem leaves open some questions about t´1, 1u-bandwidth and t´1, 0, 1u-bandwidth
of the complete graph in certain cases. In particular, when are the t´1, 1u- and t´1, 0, 1u-bandwidths of
Kn equal to 1 and when are they equal to 2? We now show that pinning down these remaining bandwidth
questions is likely very difficult, as they are equivalent to known and presumably difficult combinatorial
questions:

Theorem 2. Suppose n P Z`. The following are equivalent:

a) there exists an n ˆ n Hadamard matrix;

b) there is an n-vertex connected graph with t´1, 1u-bandwidth 1; and

c) the complete graph Kn has t´1, 1u-bandwidth 1.

Proof. The fact that (c) implies (b) is trivial.
To see that (b) implies (a), suppose G is an n-vertex connected graph with t´1, 1u-bandwidth 1, L is

its Laplacian matrix, and P is an invertible matrix whose entries belong to t´1, 1u for which P´1LP is
diagonal and PTP is diagonal (the existence of such a P follows from the fact that G has t´1, 1u-bandwidth
1). This implies exactly that P is a Hadamard matrix.

Finally, to see that (a) implies (c), recall from [BBF`22, Proposition 2.3] that every Hadamard matrix
diagonalizes the Laplacian of Kn, so it has t´1, 1u-bandwidth 1 whenever a Hadamard matrix of order n
exists.

A well-known and long-standing (and thus likely very difficult) conjecture aims to establish when the
equivalent conditions of Theorem 2 hold:6

Conjecture 1 (Hadamard conjecture). The (equivalent) statements of Theorem 2 hold if and only if n P

t1, 2u Y t4k : k P Z`u.

The exact value of the t´1, 0, 1u-bandwidth of Kn is equivalent to the existence of a Hadamard-like
matrix that is allowed to have some entries equal to 0:

Theorem 3. Suppose n P Z`. The following are equivalent:

a) there exists an n ˆ n matrix with entries from t´1, 0, 1u, with mutually orthogonal columns and one
column equal to 1;

b) there is an n-vertex connected graph with t´1, 0, 1u-bandwidth 1; and

c) the complete graph Kn has t´1, 0, 1u-bandwidth 1.
6The “only if” direction of this conjecture is known to hold; the conjecture really concerns the “if” direction.

11



Proof. The fact that (c) implies (b) is trivial.
To see that (b) implies (a), suppose G is an n-vertex connected graph with t´1, 0, 1u-bandwidth 1, L

is its Laplacian matrix, and P is an invertible matrix whose entries belong to t´1, 0, 1u for which P´1LP
is diagonal and PTP is diagonal (the existence of such a P follows from the fact that G has t´1, 0, 1u-
bandwidth 1). This implies exactly that P has the properties described by part (a) of the theorem.

Finally, to see that (a) implies (c), let P be a matrix with the properties described by part (a) of the
theorem and let L be the Laplacian matrix of Kn. Since the eigenspaces of L are spanp1q and its orthogonal
complement, P diagonalizes L: P´1LP is diagonal. Furthermore, mutual orthogonality of the columns of
P tells us that PTP is diagonal, so L has t´1, 0, 1u-bandwidth 1.

Given a positive integer n, determining whether or not there exists an n ˆ n matrix with the properties
described by part (a) of Theorem 3 seems to be quite difficult, so we state it as another conjecture:7

Conjecture 2. The (equivalent) statements of Theorem 3 hold if and only if n P t1, 2u Y t4k : k P Z`u.

We posed Conjecture 2 on MathOverflow [Joh23b], and via a combined effort of Max Alekseyev, Ilya
Bogdanov, and Mikhail Tikhomirov, it has been proved in the following special cases:

• when n ď 20;

• when n “ pk for some k P Z` and some odd prime p; and

• when n “ 2pk for some k P Z` and some odd prime p.

It follows that Kn has t´1, 0, 1u-bandwidth equal to 1 when n P t1, 2, 4, 8, 12, 16, 20u (or more gen-
erally, whenever an n ˆ n Hadamard matrix exists) and it has t´1, 0, 1u-bandwidth equal to 2 when
n P t3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19u, when n is a prime power, and when n is double a prime
power. The general case remains open.

4.2 Graph complements and joins

We noted in Proposition 1(a) that the complement of a connected S-diagonalizable graph is also S-
diagonalizable. The situation for complements of disconnected graphs is much more complicated and
depends on the set S:

Theorem 4. Let S Ď R and suppose that G is an S-diagonalizable graph with p connected components
of sizes v1, v2, . . ., vp, respectively. Then Gc is S-diagonalizable if and only if the vector pv1, v2, . . . , vpq

is S-balanced. Furthermore, if G has S-bandwidth k then Gc has S-bandwidth at most maxtp ´ 1, ku.

In the S “ t´1, 0, 1u case, the above theorem provides a significant strengthening and generaliza-
tion of several known results about t´1, 0, 1u-diagonalizability of graphs (however, the bandwidth bound
maxtp ´ 1, ku is typically weaker than can be obtained by investigating specific instances):

• Applying Theorem 4 to the graph G “ K1 \ K1 \ ¨ ¨ ¨ \ K1 (which is trivially t´1, 0, 1u-diagonalizable)
recovers the fact that, since the vector p1, 1, . . . , 1q is balanced, Gc “ Kp is also t´1, 0, 1u-diagonalizable
(refer back to Theorem 1(a)).

• Applying Theorem 4 to the graph G “ K2 \ ¨ ¨ ¨ \ K2 \ K1 \ ¨ ¨ ¨ \ K1 (which is t´1, 0, 1u-
diagonalizable by Proposition 1(b)) tells us (since the vector p21p, 1qq is regular and thus balanced
whenever q ě 2) that Gc is t´1, 0, 1u-diagonalizable. In fact, one can easily verify that Gc is
the complete graph K2p`q with p independent edges removed, so we recover the results [AAF`21,
Lemma 4.8] and [AAF`21, Corollary 4.9], but with a weaker bandwidth bound.

7Both the “if” and “only if” directions of this conjecture are unsolved.
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• When G “ Kk \ Kc
n then (since Kk and Kc

n “ K1 \ ¨ ¨ ¨ \ K1 are t´1, 0, 1u-diagonalizable) we
learn from Theorem 4 that Gc “ Kc

k _ Kn is t´1, 0, 1u-diagonalizable whenever k ě n (compare
with [AAF`21, Lemma 4.6], which was a similar result under the stronger hypothesis that n ´ k P

t0, 1, 2u).

• If G is t´1, 0, 1u-diagonalizable and has all of its connected components of the same size, Theo-
rem 4 tells us that Gc is also t´1, 0, 1u-diagonalizable (since the vector p1, 1, . . . , 1q is regular and
thus balanced). Compare this with [AAF`21, Lemma 2.5], where a similar result was established
under the additional hypothesis that G is regular.8

Proof of Theorem 4. We assume that p ą 1 (i.e., G is disconnected) throughout this proof, since the p “ 1
case is covered by Proposition 1(a).

If we denote the Laplacian matrix of G by L then the Laplacian matrix of Gc is Lc :“ nI ´ L ´ J.
It is straightforward to show that every eigenvector of L corresponding to a non-zero eigenvalue is also
an eigenvector of Lc. We would like to make a similar claim about eigenvectors corresponding to the
eigenvalue 0 of L, but we have to be considerably more careful in this case.

If we assume that the vertices of G are arranged so that its first v1 vertices belong to the first connected
component, the next v2 vertices belong to its second connected component, and so on, the p-dimensional
eigenspace of L corresponding to the eigenvalue 0 is

␣

pc11v1 , c21v2 , . . . , cp1vp q : c1, c2, . . . , cp P R
(

. (1)

Since the complement of a disconnected graph is always connected, we know that Gc is connected and
thus the eigenspace of Lc corresponding to eigenvalue 0 is 1-dimensional: it is the subspace of the set (1)
with c1 “ c2 “ ¨ ¨ ¨ “ cp. Thus any other eigenvector pc11v1 , c21v2 , . . . , cp1vp q of Lc in the set (1) must be
orthogonal to p1v1 , 1v2 , . . . , 1vp q, so must have

řp
j“1 cjvj “ 0. Conversely, any vector v of this form with

řp
j“1 cjvj “ 0 is indeed an eigenvector of Lc since

pnI ´ L ´ Jqv “ nv ´ 0v ´

¨

˝

p
ÿ

j“1

cjvj

˛

‚1 “ nv.

It follows that we can find a basis of eigenvectors of Lc with entries from S if and only if the following
conditions hold:

a) each non-zero eigenspace of L has a basis of eigenvectors with entries from S; and

b) there is a basis of the pp ´ 1q-dimensional subspace
$

&

%

pc11v1 , c21v2 , . . . , cp1vp q :
p
ÿ

j“1

cjvj “ 0

,

.

-

(2)

consisting of vectors with entries from S.

Property (a) above holds by assumption: one of our hypotheses is that G is S-diagonalizable. We claim
that property (b) holds if and only if pv1, v2, . . . , vpq is S-balanced. In fact, this follows almost immediately
from Definition 4: such a basis exists if and only if there is a linearly independent set ta1, a2, . . . , ap´1u Ă

8However, the proof of [AAF`21, Lemma 2.5] does not make use of regularity at all; it could be removed from the list of
hypotheses.
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Sp with aj ¨ v “ 0 for all 1 ď j ď p ´ 1 (each aj vector is of the form pc1, c2, . . . , cpq for some choice of
c1, c2, . . . , cp from Equation (2)). The matrix A from Definition 4 is the one whose rows are a1, a2, . . .,
ap´1, which completes the proof that Gc is S-diagonalizable if and only if pv1, v2, . . . , vpq is balanced.

The claim about the S-bandwidth of Gc follows just from investigating the orthogonality relationships
between the eigenvectors in the S-diagonalization of Lc that we constructed. The eigenvector 1 (or s1 for
some s P S, if 1 R S) is orthogonal to all other eigenvectors, the p ´ 1 eigenvectors from the set (2) are
orthogonal to all other eigenvectors (but not necessarily to each other), and the remaining eigenvectors
were all eigenvectors of L itself. Since G has S-bandwidth k, this gives an upper bound of maxt1, p ´

1, ku “ maxtp ´ 1, ku on the S-bandwidth of Gc.

The above result gives us a reasonably complete characterization of when the join of t´1, 0, 1u-
diagonalizable graphs is also t´1, 0, 1u-diagonalizable:

Corollary 2. Let S Ď R have 0 P S and let p P Z`. Suppose that, for 1 ď j ď p, Gj is a connected
vj-vertex S-diagonalizable graph with S-bandwidth k j. Then the join

Gc
1 _ Gc

2 _ ¨ ¨ ¨ _ Gc
p

is S-diagonalizable if and only if the vector pv1, v2, . . . , vpq is S-balanced. Furthermore, it has S-bandwidth
at most maxtp ´ 1, k1, k2, . . . , kpu.

Proof. Recall that the join of graphs can be written as the complement of the disjoint union of their
complements:

Gc
1 _ Gc

2 _ ¨ ¨ ¨ _ Gc
p “ pG1 \ G2 \ ¨ ¨ ¨ \ Gpqc. (3)

Since 0 P S, Proposition 1(b) tells us that G1 \ G2 \ ¨ ¨ ¨ \ Gp is S-diagonalizable with S-bandwidth at
most maxtk1, k2, . . . , kpu. Now we just use the fact that G1 \ G2 \ ¨ ¨ ¨ \ Gp is a graph with p connected
components that have v1, v2, . . ., vp vertices, respectively, so Theorem 4 tells us that its complement (3)
is S-diagonalizable if and only if pv1, v2, . . . , vpq is S-balanced, and its S-bandwidth at most maxtp ´

1, k1, k2, . . . , kpu.

It is worth noting that the “0 P S” hypothesis of Corollary 2 really is necessary. For example, the
vector p2, 1, 1, 1, 1q is t´1, 1u-balanced, as evidenced by the t´1, 1u-matrix

A “

»

—

—

–

1 1 ´1 ´1 ´1
1 ´1 1 ´1 ´1
1 ´1 ´1 1 ´1
1 ´1 ´1 ´1 1

fi

ffi

ffi

fl

.

Furthermore, K2 and K1 are each t´1, 1u-diagonalizable. However, the graph

Kc
2 _ Kc

1 _ Kc
1 _ Kc

1 _ Kc
1 “ K2,1,1,1,1

is not t´1, 1u-diagonalizable, since the eigenspace corresponding to the eigenvalue 4 of its Laplacian is
spantp1, ´1, 0, 0, 0, 0qu, which does not contain a vector with entries from t´1, 1u.
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4.3 Complete multipartite graphs

If we specialize Corollary 2 even further, we learn exactly which complete multipartite graphs are t´1, 0, 1u-
diagonalizable:

Corollary 3. The complete multipartite graph Kv1,v2,...,vp is t´1, 0, 1u-diagonalizable if and only if the
vector pv1, v2, . . . , vpq is balanced. If it is t´1, 0, 1u-diagonalizable then its t´1, 0, 1u-bandwidth is at
most maxt2, p ´ 1u.

Proof. Recall that the complete multipartite graph is the join of complements of complete graphs:

Kv1,v2,...,vp “ Kc
v1

_ Kc
v2

_ ¨ ¨ ¨ _ Kc
vp

. (4)

Theorem 1(a) tells us that every complete graph is t´1, 0, 1u-diagonalizable with t´1, 0, 1u-bandwidth at
most 2. Corollary 2 then tells us that the join (4) is t´1, 0, 1u-diagonalizable if and only if pv1, v2, . . . , vpq

is balanced, and its t´1, 0, 1u-bandwidth is at most maxt2, p ´ 1u.

Corollary 3 can be thought of as a generalization of [AAF`21, Lemma 2.6], which said that a com-
plete bipartite graph Km,n is t´1, 0, 1u-diagonalizable if and only if m “ n (this lemma was stated in
terms of diagonalizability by weakly Hadamard matrices, but the proof applies just as well to t´1, 0, 1u-
diagonalizability). In particular, if p “ 2 then the only balanced vectors in Z

p
` are the multiples of p1, 1q

(refer to Table 1), so Corollary 3 says that Km,n is t´1, 0, 1u-diagonalizable if and only if m “ n.
Similarly, in the p “ 3 case, the only balanced vectors in Z

p
` are the multiples and permutations

of p1, 1, 1q and p2, 1, 1q (refer back to Table 1), so the p “ 3 case of Corollary 3 tells us that Kℓ,m,n is
t´1, 0, 1u-diagonalizable if and only if either ℓ “ m “ n or (assuming ℓ ě m ě n) ℓ “ 2m “ 2n.

There is a similar characterization of t´1, 1u-diagonlizability of complete multipartite graphs, but it
does not involve t´1, 1u-balanced vectors. Instead, we get the following even more explicit (and much
more restrictive) characterization:

Theorem 5. The complete multipartite graph Kv1,v2,...,vp is t´1, 1u-diagonalizable if and only if v1 “

v2 “ ¨ ¨ ¨ “ vp, and p, v1 P t1u Y t2n : n P Z`u.

Proof. If we define rvj :“
ř

i‰j vi then the Laplacian matrix of Kv1,v2,...,vp is

L “

»

—

—

—

—

—

–

rv1 Iv1 ´Jv1,v2 ´Jv1,v3 ¨ ¨ ¨ ´Jv1,vp

´Jv2,v1 rv2 Iv2 ´Jv2,v3 ¨ ¨ ¨ ´Jv2,vp

´Jv3,v1 ´Jv3,v2 rv3 Iv3 ¨ ¨ ¨ ´Jv3,vp

...
...

...
. . .

...
´Jvp,v1 ´Jvp,v2 ´Jvp,v3 ¨ ¨ ¨ rvp Ivp

fi

ffi

ffi

ffi

ffi

ffi

fl

.

It is straightforward to verify that, for all 1 ď i ď p and 1 ď j ď vi ´ 1, the vector

p0v1 , . . . , 0vi´1 , ej ´ ej`1, 0vi`1 , . . . , 0vp q (5)

is an eigenvector of L with corresponding eigenvalue equal to rvi. Together with 1 (i.e., the eigenvector of
L with corresponding eigenvalue equal to 0), this gives us a set of p

ř

i viq ´ pp ´ 1q linearly independent
eigenvectors of L. The remaining pp ´ 1q-dimensional eigenspace has corresponding eigenvalue

ř

i vi and
is equal to

span

#

pc11v1 , c21v2 , . . . , cp1vp q :
ÿ

i

civi “ 0

+

. (6)
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With the structure of the eigenspaces of L understood, we now begin the “only if” direction of the
proof. Suppose (for the sake of establishing a contradiction) that there exist some indices i, j such that
vi ‰ vj and thus rvi ‰ rvj. Since the eigenspace of L corresponding to the eigenvalue rvi is spanned by
vectors of the form (5), which all have 0vj in their j-th block. It follows that there is no t´1, 1u vector in
this eigenspace, so Kv1,v2,...,vp is not t´1, 1u-diagonalizable.

Now suppose that Kv1,v2,...,vp is t´1, 1u-diagonalizable. To see that v1 must be even or equal to 1,
recall (again, from Equation (5)) that if v1 ą 1 then every eigenvector corresponding to the eigenvalue rv1
must have its first v1 entries add to 0. If such an eigenvector only has entries from t´1, 1u then v1 must be
even.

To see that p must be even or equal to 1, recall that if p ą 1 then the eigenspace corresponding to the
eigenvalue

ř

i vi is as in Equation (6). If a vector pa11v1 , a21v2 , . . . , ap1vp q with
řp

i“1 aivi “ v1
řp

i“1 ai “

0 has ai P t´1, 1u for all 1 ď i ď p then p must be even. This complete the proof of the “only if”
direction.

Conversely, suppose that v1 “ v2 “ ¨ ¨ ¨ “ vp and p, v1 P t1u Y t2n : n P Z`u. Then the Laplacian
matrix L of Kv1,v2,...,vp has eigenvalues 0, rv1 and pv1 with multiplicities 1, ppv1 ´ 1q and p ´ 1, respec-
tively. The eigenspace corresponding to the eigenvalue 0 is spanned by the vector 1. The eigenspace
corresponding to the eigenvalue rv1 is

␣

px1, x2, . . . , xpq : xj ¨ 1 “ 0 for all 1 ď j ď p
(

. (7)

If v1 “ 1 then this eigenspace is 0-dimensional. If v1 ą 1 is even then, by Lemma 1, there exists a full
rank matrix X P Mv1,v1´1 with entries from t´1, 1u whose columns are all orthogonal to 1. If we let xj
be the j-th column of X (1 ď j ď v1 ´ 1), then the set

␣

pxj1 , xj2 , . . . , xjpq : 1 ď ji ď v1 ´ 1 for all 1 ď i ď p
(

(8)

spans the eigenspace (7), and each of its members has entries coming from t´1, 1u. There is thus some
subset of the set (8) that is a t´1, 1u-basis of the eigenspace (7).

Finally, the eigenspace corresponding to the eigenvalue pv1 is
␣

x b 1v1 : x ¨ 1p “ 0
(

. (9)

If p “ 1 then this eigenspace is 0-dimensional. If p ą 1 is even then, similarly to before, Lemma 1 tells us
that there exists a full rank matrix X P Mp´1 with entries from t´1, 1u whose columns are all orthogonal
to 1. If we let xj be the j-th column of X (1 ď j ď p ´ 1), then the set

␣

xj b 1v1 : 1 ď j ď p ´ 1
(

is a t´1, 1u-basis of the eigenspace (9). It follows that every eigenspace has a basis consisting of vectors
whose entries belong to t´1, 1u, which completes the proof.

Theorem 5 shows that there are very few (fewer than n) complete multipartite graphs on n vertices
that are t´1, 1u-diagonalizable. By contrast, our final result of this subsection gives a lower bound that
shows that there are many t´1, 0, 1u-diagonalizable complete multipartite graphs on n vertices. More
specifically, there are superpolynomially many of them:

Corollary 4. There exists N P Z` such that, whenever n ě N, there are at least 13
?

n complete multi-
partite graphs on n vertices that are t´1, 0, 1u-diagonalizable but not t´1, 1u-diagonalizable.
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Proof. If f pnq denotes the number of complete partitions of n then it is known (see [Hop07] and the
references therein) that

lim
nÑ8

4
?

3n f pnq

eπ
?

2n{3
“ 1.

Since eπ
?

2{3 « 13.0019 ą 13, it follows that there exists N P Z` such that

f pn ´ 1q ´ n
13

?
n

ą 1

whenever n ě N. Since f pn ´ 1q equals the number of regular vectors with sum equal to n, we conclude
that f pn ´ 1q ´ n is a lower bound on the number of complete multipartite graphs on n vertices that are
t´1, 0, 1u-diagonalizable but not t´1, 1u-diagonalizable. The result follows.

For small values of n, we can compute the exact number of n-vertex t´1, 0, 1u-diagonalizable com-
plete multipartite graphs by computing the number of balanced vectors in Z

p
` (for any p) with non-

decreasing entries that sum to n. A list of all such vectors for 1 ď n ď 9 is provided in Table 2.

n balanced vectors v

1 p1q

2 p1, 1q, p2q

3 p1, 1, 1q, p3q

4 p1, 1, 1, 1q, p2, 1, 1q, p2, 2q, p4q

5 p1, 1, 1, 1, 1q, p2, 1, 1, 1q, p5q

6 p1, 1, 1, 1, 1, 1q, p2, 1, 1, 1, 1q, p2, 2, 1, 1q, p3, 1, 1, 1q, p2, 2, 2q, p3, 3q, p6q

7 p1, 1, 1, 1, 1, 1, 1q, p2, 1, 1, 1, 1, 1q, p2, 2, 1, 1, 1q, p3, 1, 1, 1, 1q, p3, 2, 1, 1q, p7q

8 p1, 1, 1, 1, 1, 1, 1, 1q, p2, 1, 1, 1, 1, 1, 1q, p2, 2, 1, 1, 1, 1q, p3, 1, 1, 1, 1, 1q, p2, 2, 2, 1, 1q,
p3, 2, 1, 1, 1q, p4, 1, 1, 1, 1q, p2, 2, 2, 2q, p3, 2, 2, 1q, p4, 2, 1, 1q, p4, 2, 2q, p4, 4q, p8q

9 p1, 1, 1, 1, 1, 1, 1, 1, 1q, p2, 1, 1, 1, 1, 1, 1, 1q, p2, 2, 1, 1, 1, 1, 1q, p3, 1, 1, 1, 1, 1, 1q, p2, 2, 2, 1, 1, 1q,
p3, 2, 1, 1, 1, 1q, p4, 1, 1, 1, 1, 1q, p3, 2, 2, 1, 1q, p3, 3, 1, 1, 1q, p4, 2, 1, 1, 1q, p3, 3, 3q, p9q

Table 2: A list of all balanced vectors v P Z
p
` whose sum is n, up to re-ordering of entries, for 1 ď n ď 9.

Compare with Table 1 and with the complete multipartite graphs listed in Table 3.

4.4 Graphs on nine or fewer vertices

Here (in Table 3) we list all simple connected graphs on 1 ď n ď 9 vertices that are t´1, 0, 1u- or
t´1, 1u-diagonalizable, and their corresponding bandwidths. These graphs and their diagonalizations
were computed via brute-force computer search; details and code are provided at [Joh23a]. In most cases
when n P t1, 2u Y t4k : k P Z`u the bandwidths are 1, implying that the quasi-orthogonality condition of
weakly Hadamard diagonalizable is typically only necessary for graphs of other sizes.

Most simple connected weakly Hadamard diagonalizable graphs on nine or fewer vertices were listed
in [AAF`21, Appendix A]. We use an asterisk in the “Name” column of Table 3 to identify the t´1, 0, 1u-
diagonalizable graphs that were absent from the list appearing in [AAF`21] (indicating that they have
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t´1, 0, 1u-bandwidth strictly greater than 2, or they were missed in the computer search performed in
[AAF`21]). We note that [MMP23, Example 9] showed that there are at least 23 nonisomorphic simple
connected graphs on 8 vertices that have t´1, 0, 1u-bandwidth equal to 1, 6 of which are Hadamard di-
agonalizable (i.e., have t´1, 1u-bandwidth equal to 1), and the other 17 of which are not (since they are
not regular). This agrees with the results displayed in Table 3, which also includes 3 additional graphs on
eight vertices that have t´1, 0, 1u-bandwidth 2.

We also note, however, that the small bandwidths displayed in Table 3 could be an artifact of that
fact that these graphs all have very few vertices. In particular, since eigenvectors coming from distinct
eigenspaces of a graph’s Laplacian matrix are necessarily orthogonal to each other, the largest finite S-
bandwidth that a graph can have (for any choice of S) is largest multiplicity of an eigenvalue of its Lapla-
cian (which is typically a small integer when n ď 9). A larger number of vertices would allow for larger
eigenspaces, in which case there will likely be far more graphs with t´1, 0, 1u-bandwidth larger than 2.

n Graph Name t´1, 0, 1u-bandwidth t´1, 1u-bandwidth

1 K1 1 1

2 K2 1 1

3 K3 2 8

4 K2,2 1 1

K2,1,1 1 8

K4 1 1

5 K2,1,1,1 2 8

K5 2 8

6 pK3 □ K2qc 2 8

K3,3 2 8

K3,1,1,1 2 8

K3 □ K2 2 8

K2,2,2 2 8
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K2,2,1,1 2 8

K2,1,1,1,1 2 8

K6 2 5

7 K3,2,1,1 2 8

K3,1,1,1,1 2 8

K2,2,1,1,1 2 8

K2,1,1,1,1,1 2 8

K7 2 8

8 pK4 □ K2qc 1 1

K4,4 1 1

pK4 \ K2,1,1qc 1 8

pK4 \ K2,2qc 1 8

K4,2,2 1 8

K4,2,1,1 1 8

K4,1,1,1,1 1 8

pK2,1,1 \ K2,1,1qc 1 8

19



pK2,1,1 \ K2 \ K2qc 1 8

pK2,1,1 \ K2 \ K1 \ K1qc,* 1 8

pK2,1,1 \ K1 \ K1 \ K1 \ K1qc 1 8

K2,1,1 □ K2,* 1 8

pK2,2 \ K2,1,1qc 1 8

K3,2,2,1 2 8

K3,2,1,1,1 2 8

K3,1,1,1,1,1 2 8

K4 □ K2 1 1

pK2,2 \ K2,2qc 1 1

pK2,2 \ K2 \ K2qc 1 8

pK2,2 \ K2 \ K1 \ K1qc 1 8

pK2,2 \ K1 \ K1 \ K1 \ K1qc 1 8

K2,2,2,2 1 1

K2,2,2,1,1 1 8

K2,2,1,1,1,1 1 8
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K2,1,1,1,1,1,1 1 8

K8 1 1

9 K4,2,1,1,1, * 3 8

K4,1,1,1,1,1 2 8

pK2,1,1 \ K2 \ K1 \ K1 \ K1qc, * 3 8

pK2,1,1 \ K1 \ K1 \ K1 \ K1 \ K1qc 2 8

K3 □ K3 2 8

K3,3,3 2 8

K3,3,1,1,1 2 8

K3,2,2,1,1, * 3 8

K3,2,1,1,1,1, * 2 8

K3,1,1,1,1,1,1, ˚ 2 8

pK2,2 \ K2 \ K1 \ K1 \ K1qc 2 8

pK2,2 \ K1 \ K1 \ K1 \ K1 \ K1qc, * 2 8

K2,2,2,1,1,1 2 8

K2,2,1,1,1,1,1 2 8
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K2,1,1,1,1,1,1,1 2 8

K9 2 8

Table 3: The bandwidth of all simple connected graphs on 1 ď n ď 9 vertices that are t´1, 0, 1u-
diagonalizable. Hadamard-diagonalizable graphs are those with t´1, 1u-bandwidth equal to 1. Weakly
Hadamard-diagonalizable graphs are those with t´1, 0, 1u-bandwidth at most 2.

It is interesting that every single graph on 9 or fewer vertices that is t´1, 0, 1u-diagonalizable can be
constructed via K1 via the operations and theorems described earlier in the paper:

• complementation (Proposition 1(a) and Theorem 4);

• disjoint union (Proposition 1(b)); and

• the Cartesian product (Proposition 1(c)).

5 Conclusion and future work

Motivated by the notion of weak Hadamard diagonalizable graphs introduced in [AAF`21], we studied
graphs whose Laplacian matrix is diagonalized by matrices with all entries belonging to t´1, 0, 1u or
t´1, 1u, with or without the assumption of orthogonality or quasi-orthogonality of its columns.

Our work significantly clarifies numerous questions concerning t´1, 0, 1u-diagonalizability of graphs.
For example, it was noted in the novel work [AAF`21] that K3,2,2,1 is t´1, 0, 1u-diagonalizable, despite
none of the results therein really capturing “why”. By contrast, our results (Corollary 3 in particular) makes
this transparent: K3,2,2,1 is t´1, 0, 1u-diagonalizable because the vector p3, 2, 2, 1q is balanced. However,
our work has also raised numerous questions that we believe are worth exploring:

• Is Conjecture 2 true? This is a natural variant of the well-known Hadamard conjecture (i.e., Conjec-
ture 1).

• All t´1, 1u-diagonalizable graphs that we have found are regular. Are they indeed all regular? It
was proved in [BFK11, Theorem 5] that this is true for Hadamard-diagonalizable graphs, but it is
unclear whether or not the proof can be modified to work without orthogonality of the rows and/or
columns of the t´1, 1u-matrix.

• Related to the previous question, a brute-force computer search reveals that the only regular con-
nected graph on n “ 10 vertices that is t´1, 1u-diagonalizable is the complete graph (refer back
to Theorem 1(b)). It thus is natural to ask whether or not the complete graph is the only connected
graph that is t´1, 1u-diagonalizable when n ” 2 pmod 4q.
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